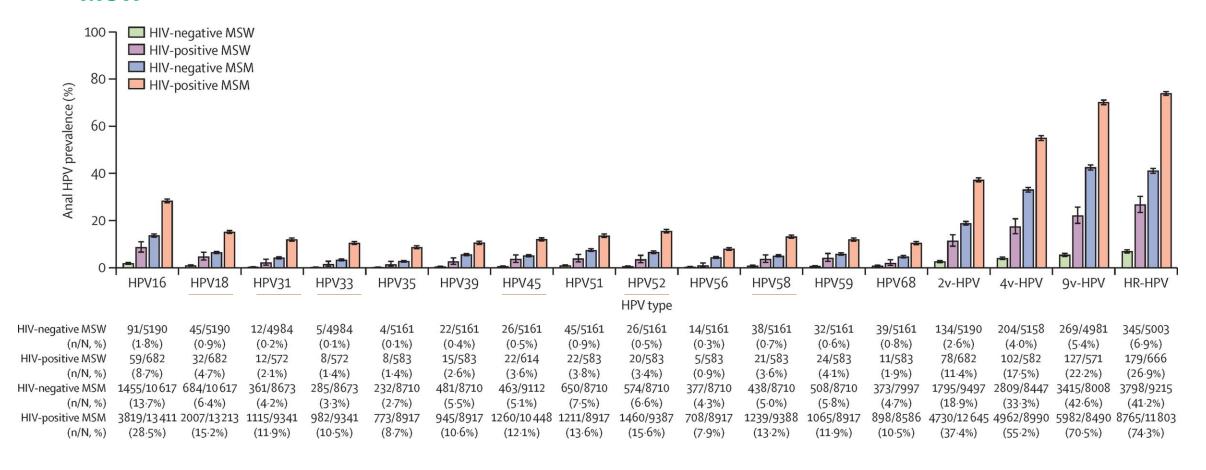
Natural history of HPV infection in males

Dorothy Machalek, PhD

Global Health Program, Kirby Institute, University of New South Wales, Sydney

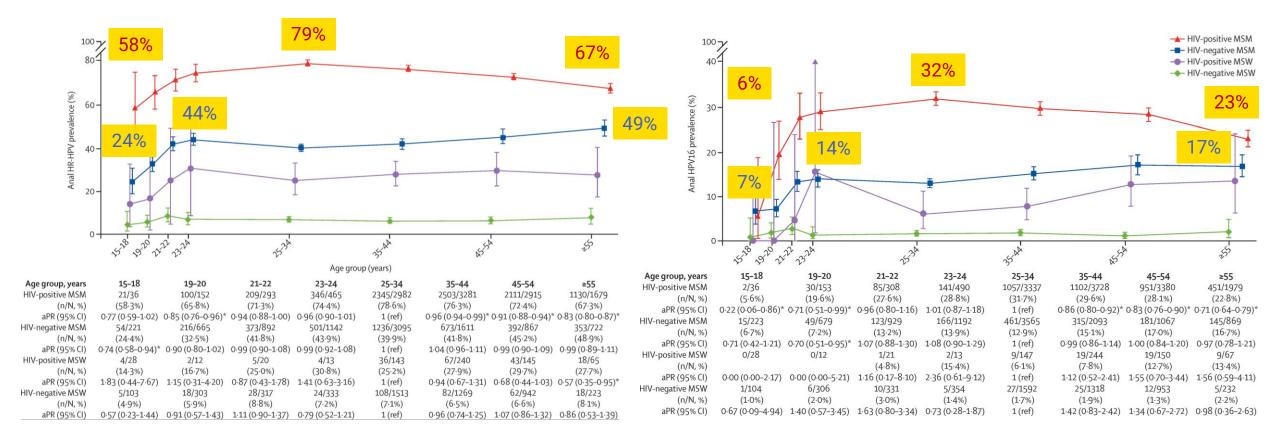
HPV Prevention and Control Board Technical Meeting, Antwerp 5 June 2025

Focus of presentation


- What do we know about anal HPV natural history in males
- What are the evidence gaps
- What are the implications for prevention strategies

What do we know about anal HPV natural history in males?

- Anal HPV is common in men, especially MSM and immunocompromised individuals.
- HPV 16 is the most prevalent and oncogenic type.
- Most infections are transient, but persistence, especially of HPV 16 increases risk of developing anal HSIL.
- Anal HSIL is heterogeneous can clear, persist, or progress to cancer.
- Anal cancer is rare overall, but incidence is markedly elevated in people living with HIV, particularly MSM and older MSM without HIV.
- Vaccination programs reduce anal HPV infections and anal HSIL (trials and real world).
- Screening for anal HSIL followed by treatment can prevent progression to cancer.


Anal HPV prevalence by risk group

Pooled data from 64 studies including 29,900 men (Wei et al. Lancet HIV 2021): 44.9% MSM with HIV, 35.5% HIV-negative MSM, 2.3% MSW with HIV, 17.4% HIV-negative MSW

Age-specific anal HPV prevalence by risk group

Pooled data from 64 studies including 29,900 men (Wei et al. Lancet HIV 2021): 44·9% MSM with HIV, 35·5% HIV-negative MSM, 2·3% MSW with HIV, 17·4% HIV-negative MSW

^{*} Low precision in some groups due to small sample sizes

Anal HPV incidence and clearance estimates in males

Pooled longitudinal data from 34 studies, adapted from Wei et al. IJC 2023

Risk Group	N (with ≥2 valid visits)	HPV-16 Incidence (per 1,000 person months)	HPV-16 Clearance (per 1,000 person months)
MSM with HIV	4,745	14.8 (13.5-16.1)	61.5 (55.6-67.9)
MSM, HIV-neg	3,459	9.1 (8.2-10.1)	95.5 (86.0-106.0)
MSW with HIV	330	3.2 (2.1-5.0)	170.4 (125.2-231.8)
MSW, HIV-neg	2,691	2.0 (1.3-3.1)	264.6 (193.9- 361.0)

- Incidence highest in MSM with HIV; lowest in HIV-negative MSW.
- Clearance rates follow inverse pattern: lower clearance in MSM with HIV
- Suggests prolonged infection and higher risk in MSM with HIV.
- Similar patterns for other HR-HPV types

Predictors of incident anal HPV 16 infection

Risk Factor	MSM, aHR (95% CI)	MSW, aHR (95% CI)
Age (per 10 years)	0.77 (0.72-0.81)	0.72 (0.52-0.99)
HIV+	1.42 (1.22-1.64)	3.33 (1.46-7.64)
High* lifetime sexual partners	1.22 (1.01-1.47)	4.79 (1.38-16.7)
High** recent sexual partners	1.76 (1.38-2.23)	1.90 (0.52-6.91)
Ever receptive anal sex	1.43 (1.11-1.85)	_
>50 lifetime anal sex partners	1.58 (1.18-2.13)	_
>3 recent anal sex partners	1.45 (1.17-1.80)	_
Current smoker	1.21 (1.03-1.43)	_
HSIL at baseline	1.13 (0.89-1.42)	_
Among individuals with HIV only		
CD4 350-500 (ref >500)	1.26 (1.02-1.55)	_
CD4 <350	1.12 (0.89-1.42)	_
HIV+ VL >10,000 (ref <50)	1.14 (0.92-1.40)	_

^{* &}gt;200 for MSM and >3 MSW

** >5 for MSM and >1 for MSW

Pooled analysis adapted from Wei et al. IJC 2023 (Table 1)

Predictors of anal HPV 16 clearance

Risk Factor	MSM	MSW
Age (per 10 years)	0.81 (0.77-0.85)	0.91 (0.71-1.17)
HIV+	0.68 (0.60-0.77)	0.37 (0.18-0.75)
High lifetime sexual partners	0.90 (0.76-1.06)	0.61 (0.21-1.75)
High recent sexual partners	1.14 (0.91-1.44)	1.70 (0.44-6.56)
Ever receptive anal sex	1.18 (0.92-1.51)	_
High lifetime anal sex partners	1.24 (0.95-1.61)	_
High recent anal sex partners	1.04 (0.86-1.26)	_
Current smoker	0.94 (0.81-1.09)	_
HSIL at baseline	0.66 (0.54-0.79)	_
Incident infection (vs prevalent)	2.44 (2.16-2.74)	_
Among individuals with HIV only		
HIV+ CD4 350-500 (ref >500)	1.16 (0.97-1.39)	_
HIV+ CD4 <350	1.00 (0.82-1.23)	_
HIV+ VL >10,000 (ref <50)	0.76 (0.63-0.92)	_

^{* &}gt;200 for MSM and >3 MSW

^{** &}gt;5 for MSM and >1 for MSW

Cumulative persistence of anal HPV-16

Pooled longitudinal data from 34 studies, adapted from Wei et al. IJC 2023

Risk Group	2-Year Persistence of Prevalent HPV-16 (%)	2-Year Persistence of Incident HPV-16 (%)	Age Effect on Persistence
MSM with HIV	58.6	30.6	Increases with age; ≥55 yrs: 69% infections ≥2 years
MSM, HIV-neg	35.7	15.4	Increases with age; ≥55 yrs: 68% infections ≥2 years
MSW with HIV	15.3	4.6	Insufficient data
MSW, HIV-neg	2.7	1.2	Insufficient data

- Prevalent HPV16 infections persist longer than incident ones.
- Persistence increases with age in MSM (HIV+ and HIV-).
- Older MSM have more long-lasting infections, raising cancer risk.
- Insufficient data to assess patterns in MSW.

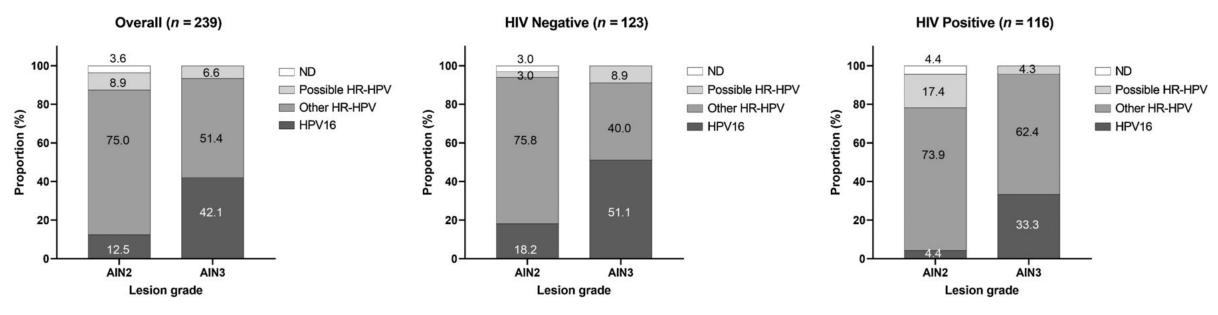
9

Anal HSIL: A cancer precursor lesion

HSIL is the precursor to anal cancer (1)

 The ANCHOR trial showed that treating HSIL in people with HIV reduced anal cancer incidence by 57%, confirming HSIL as a cancer precursor.

HSIL prevalence in MSM (insufficient data for other groups) (2)


- ~8-54% in MSM with HIV
- ~5-43% in HIV-negative MSM
 (data from studies using HRA on all participants)

Risk factors for anal HSIL (2)

- Strongly associated with HIV and HPV16 infection, but age patterns differ:
- In all MSM: HSIL prevalence decreases with age
- In HPV16-positive MSM: HSIL prevalence increases with age
- Among HPV16+ men, MSM with HIV and low current CD4 counts have highest risk for HSIL

HSIL heterogeneity – HPV types in AIN2 vs AIN3

HPV types detected in 239 individual HSIL-AIN2 (p16+ve) and AIN3 lesions in the Study of the Prevention of Anal Cancer (SPANC), stratified by HIV status

- In HIV-negative MSM, AIN3 lesions significantly more likely to be caused by HPV16 than AIN2, while AIN2
 had more non-16 HR-HPV.
- In MSM with HIV, HPV16 remained more common in AIN3, but non-16 HR-HPV were also more common causes of AIN2 and AIN3.
- Distinction in HSIL (particularly HPV16) may help to further refine those at highest risk

Predictors of anal HSIL incidence

Summary of findings from the SPANC Study (Poynten et al. CID 2020)

Overall HSIL incidence:	11.3 cases per 100 person-years (PY)
Higher risk groups:	
Effect of previous lesions:	
Persistent HPV infection:	
New HPV16 infections:	
Incidence after prior HSIL clearance*:	
Strongest independent predictors:	

^{*}New HSIL that develops in someone who had HSIL before, cleared it (it went away), and then got it again during the study.

Predictors of spontaneous anal HSIL clearance

Summary of findings from the SPANC Study (Poynten et al. CID 2020)

Overall HSIL clearance:	22.0 cases per 100 person-years (PY)
Groups with higher clearance:	
Persistent HPV infection:	
Clearance of new HSIL:	
Clearance of baseline prevalent HSIL:	
Strongest independent predictors:	
Durability of clearance:	

^{*}New HSIL that developed during the study period.

Estimates of HSIL progression to cancer

Untreated populations (1-2):

- Active monitoring arm of ANCHOR trial (PLHIV): 408 per 100,000 PY (~0.41% per year). Higher rates were found among those with large HSIL lesions.
- SPANC study (Community recruited two-thirds HIV-negative): 0.224 per 100 PY (~0.22% risk per year). The progression rate was 0.324 per 100 PY (95% after HSIL-AIN3 diagnosis.

People receiving treatment (3-4):

 Estimates of anal cancer progression of between 0.6% and 1.9% per year in multiple studies.

What about latent infections?

Evidence from SPANC (Poynten et al. CEBP 2022):

- 58 of 525 men (11%) with follow up reported no sexual partners (in the preceding 6 months) on at least two consecutive annual visits (1225.8 PY of follow-up).
- 29 incident HRHPV detections in 20 men, an average incidence of 2.4 per 100PY (95% CI, 1.64-3.40).
- None tested positive for other STIs anorectal/pharyngeal gonorrhea, chlamydia or syphilis at the time of incident detection infection.
- **Predictors:** HIV-positive status, older than 55 years. Among men with HIV, longer duration of HIV infection, having a history of AIDS defining illness, and a lower current, and nadir CD4 count.
- No associated cases of HSIL

Knowledge gaps

- Timing from infection to cancer, especially differences by HIV status and HPV genotype, remains poorly defined.
- Critical host immune factors and the impact of modifiable risks (e.g., smoking) on persistence vs clearance are not fully understood.
- Reliable biomarkers and clinical predictors that accurately distinguish lesions likely to progress from those that regress are lacking.
- Scarce longitudinal/cancer incidence data limit understanding of natural history and progression risk in HIV negative MSM and heterosexual men
- The role of latent infection in cancer risk

Considerations for prevention strategies

- Early vaccination remains the most effective anal HPV prevention tool in males.
- Catch-up vaccination may have some benefits, but it may not eliminate the need for screening.
- MSM living with HIV—especially those with anal HPV16—are at highest risk for anal cancer and should be prioritises for screening.
- Screening algorithms could incorporate additional risk stratifications (i.e., identifying persistent infection rather than all HPV detection, those with larger lesions, and AIN3).
- First-time screening is likely to detect more persistent infections (higher risk), while re-screening may detect more incident/new infections (lower risk); keeping this in mind may help refine risk stratification.