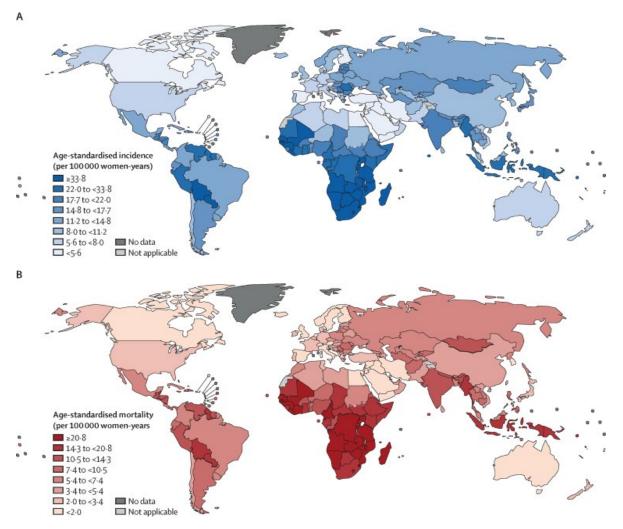


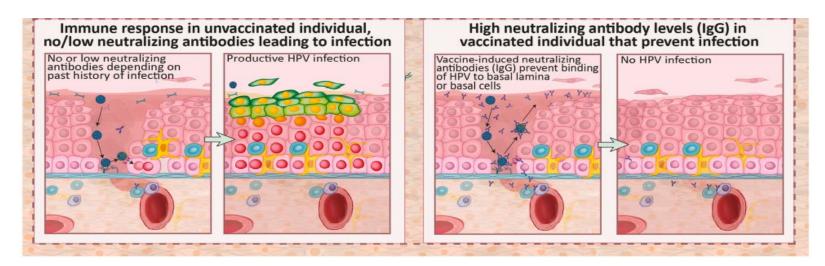
HPV VACCINATION ON HPV-POSITIVE WOMEN: USING FUNCTIONAL IN-VITRO MODELS TO UNDERSTAND HPV INFECTIVITY AND TRANSMISSION

Miquel Angel Pavon Ribas Infections and Cancer Laboratory Institut Català d'Oncologia (ICO) Institut d' Investigacions Biomèdiques de Bellvitge (IDIBELL)



HUMAN PAPILLOMAVIRUS

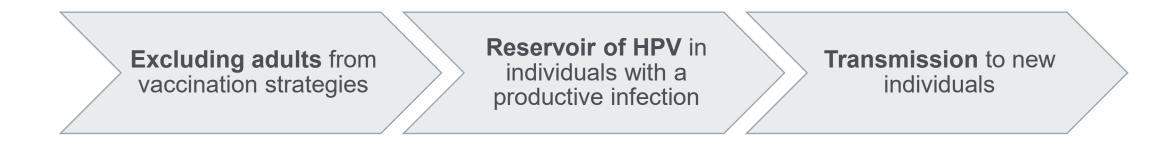
Worldwide, more than 610,000 cancer cases are annually attributed to Human Papillomavirus (HPV).


HPV16 and HPV18 \rightarrow Responsible for more than 70% cervical cancers.

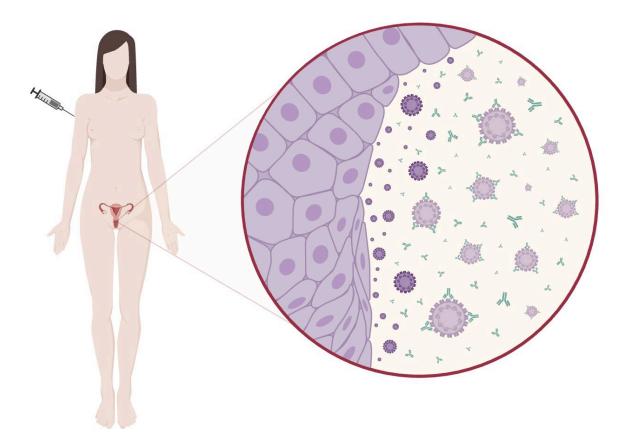
Sexually transmitted infection

HPV vaccines

- **HPV vaccines based on VLPs** have demonstrated high safety, immunogenicity, and effectiveness for the prevention of infection and associated malignant lesions.
- **Neutralizing antibodies (nAbs)** are essential in preventing the HPV viral particles from attaching to the surface of epithelial cells, thereby inhibiting new infections.
- nAbs produced after vaccination provide much longer-lasting and more effective individual protection than those produced by natural infection



HPV vaccines


- **HPV prophylactic vaccination** has proven effective in preventing new infections, but it does not treat existing HPV infections or associated diseases.
- Therefore, vaccination programs are mainly focused on young women.

Could HPV vaccination have on impact on HPV positive individuals reducing HPV transmission?

- HPV vaccination of HPV-positive women is equally immunogenic and completely safe
- nAbs are present in cervical, oral, anal and urine samples
- HPV virions are realized in the cervical mucosa
- Vaccination reduces the risk of clinical disease relapse after treatment
- vaccine-induced antibody responses are significantly higher than natural serological responses

Vaccine induce nAbs that joing to new HPV released particles and inhibite their infectivity?

VACCINATION IN HPV-POSITIVE INDIVIDUALS

> JMIR Res Protoc. 2019 Jan 16;8(1):e11284. doi: 10.2196/11284.

Human Papillomavirus Infection and Transmission Among Couples Through Heterosexual Activity (HITCH) Cohort Study: Protocol Describing Design, Methods, and Research Goals

Mariam El-Zein ¹, François Coutlée ², Pierre-Paul Tellier ³, Michel Roger ², Eduardo L Franco ¹, Ann N Burchell ¹ ⁴ ⁵; HITCH Study Group

 Randomized Controlled Trial
 > Sex Transm Dis. 2022 Jun 1;49(6):414-422.

 doi: 10.1097/OLQ.000000000001620. Epub 2022 Mar 2.

Protection to Self and to One's Sexual Partner After Human Papillomavirus Vaccination: Preliminary Analysis From the Transmission Reduction And Prevention with HPV Vaccination Study

```
Aaron MacCosham<sup>1</sup>, Mariam El-Zein<sup>1</sup>, Ann N Burchell, Pierre-Paul Tellier<sup>2</sup>, François Coutlée<sup>3</sup>, Eduardo L Franco<sup>1</sup>; TRAP-HPV study group
```

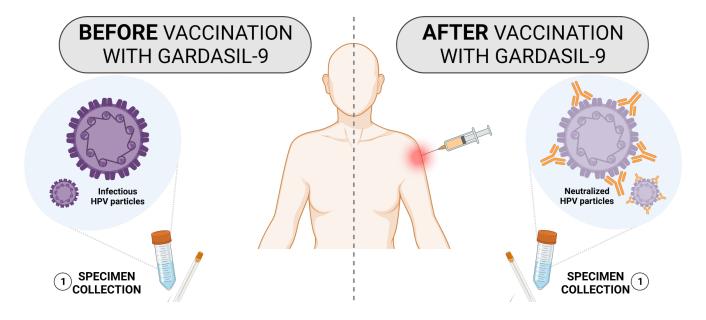
Observational Study > PLoS One. 2019 Mar 4;14(3):e0212927. doi: 10.1371/journal.pone.0212927. eCollection 2019.

Effect of the bivalent HPV vaccine on viral load of vaccine and non-vaccine HPV types in incident clearing and persistent infections in young Dutch females

```
Pascal van der Weele <sup>1 2</sup>, Martijn Breeuwsma <sup>1</sup>, Robine Donken <sup>1 2</sup>, Elske van Logchem <sup>1</sup>,
Naomi van Marm-Wattimena <sup>1</sup>, Hester de Melker <sup>1</sup>, Chris J L M Meijer <sup>2</sup>, Audrey J King <sup>1</sup>
```

Women that reported being vaccinated showed less HPV transmission to their partners and lower viral loads (for HPV6/11/16/18 infections), when compared to unvaccinated women.

Inconclusive evidence regarding if HPV vaccination could reduce transmission and in turn protect sex partners from new vaccine-preventable infections.


Lower viral load in persistent infections

RIFT

Reduction of VIral InFectivity and Transmission in HPV16/18 positive women before and after vaccination with nonavalent HPV vaccine

Evaluate if a 3-dose regimen of 9 valent HPV vaccine could reduce the infective capacity of body fluids from HPV16/18positive women using a in vitro functional model to evaluate infectivity

RIFT STUDY

This non-randomized, open-label trial, has been designed to recruit two different cohorts of **non-vaccinated adult women, positive for HPV16 and/or HPV18**:

- RIFT-HPV1 (39 subjects): Women with a previous HPV16 and/or HPV18 positive cervical test and no apparent cervical lesions or cervical intraepithelial neoplasia (CIN) 1/2 lesions, eligible for conservative treatment.
- RIFT-HPV2 (30 subjects): Women with a previuos HPV16 and/or HPV18 positive anal test and no apparent anal lesions or anal lesions eligible for conservative treatment, as well as adult women with an HPV16 and/or HPV18 positive cervical test and HPV-associated vulvar lesions.

Recruitment centre

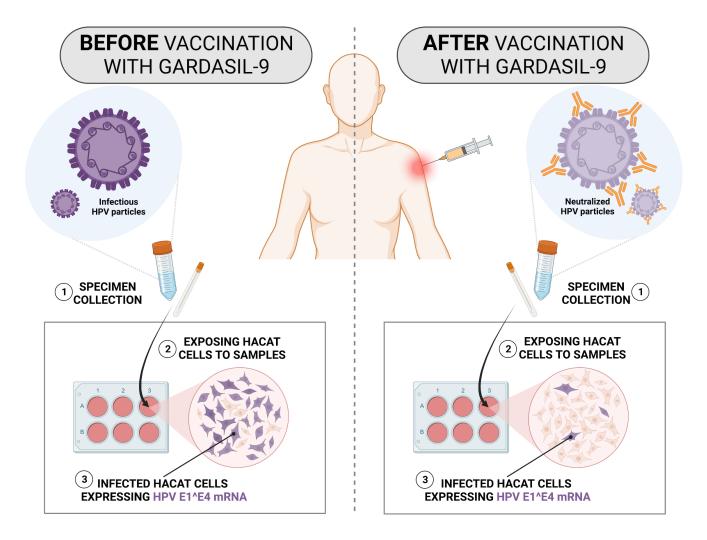
• Gynaecology Unit, Bellvitge University Hospital (HUB), L'Hospitalet de Llobregat, Barcelona, Spain

Satellite sites

- Department of Obstetrics and Gynaecology, Hospital del Mar Mar Health Park, Barcelona, Spain
- Sexual and Reproductive Health Care Center ASSIR, Delta del Llobregat, Barcelona, Spain
- HIV and STD Unit, Bellvitge University Hospital (HUB), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Cervical Cancer Screening Technical Office, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain

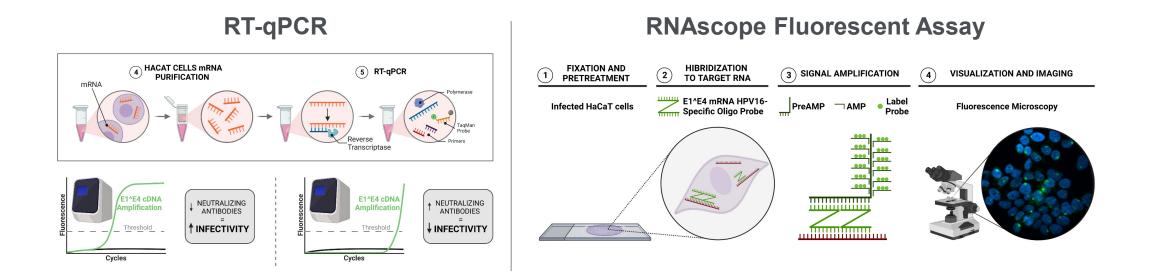
http://ico.gencat.cat

STUDY PROCEDURES


- Questionnaire
- Sample Collection
 - Cervical
 - Vulvar
 - Anal
 - First-void Urine
 - Oral
 - Blood
- Vaccine administration

	STUDY PERIOD			
	Visit 1	Visit 2	Visit 3	Visit 4
TIMEPOINT	Day 1	Month 2 (±3 weeks)	Month 6 (±4 weeks)	Month 7 (-3/+7 weeks)
ENROLMENT				
Eligibility screen	х			
Informed consent	х			
INTERVENTIONS				
Urine hCG pregnancy test	х	x	x	x
Temperature measurement	х	x	x	x
Questionnaire	х	x	x	x
Height and weight measurement	х			
Medical history and prior/concomitant medication and vaccination	х	x	x	x
Gynaecological examination	х	x	x	x
Cervical sample collection	х	X	x	x
Vulvar sample collection	х	X	x	x
Anal sample collection	х	x	x	x
First-void urine collection	х	x	x	x
Oral sample collection	х	x	х	x
Blood sample collection	х	x	x	x
ASSESSMENTS				
Post-vaccination immediate AE ¹	х	x	x	
AE/SAE assessment		x	x	X

PRIMARY ENDPOINT

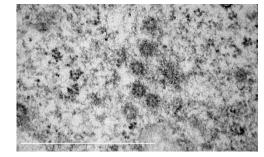

Measure HPV infectivity before and after vaccination through the **in vitro infection** of HaCaT cells and the subsequent **expression of the HPV E1^E4** spliced transcript.

In vitro evaluation of viral infectivity

Indirect quantification of infective HPV virions in a sample by quantifying HPV E1^E4 mRNA expression in HaCaT cells after incubation with the collected samples (cervical, anal and oral).

COMPLEMENTARY ENDPOINTS

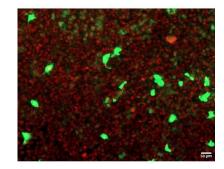
HPV DNA detection and genotyping



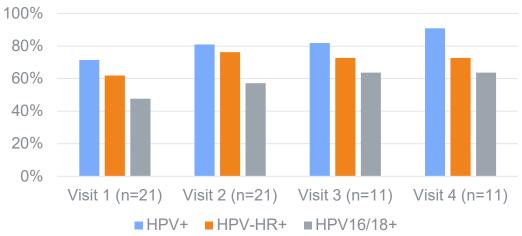
Anyplex / Allplex HPV28 Assay

HPV16/18 virion

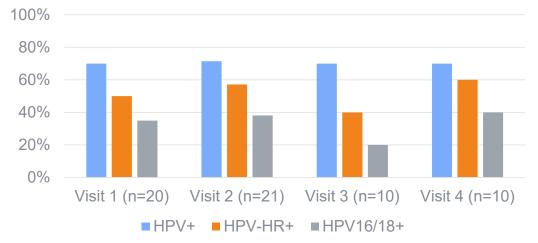
detection



Anti-HPV L1 ELISA / Electron Microscopy


Anti-HPV L1 detection

in body fluids


Anti-HPV L1 Ab ELISA / Neutralisation Assays

- 23 patients, 68 visits in total:
 - RIFT-HPV1: 21 patients
 - RIFT-HPV2: 2 patients
- 408 samples received and processed
- 136 DNA extractions and HPV detection and genotyping (cervical and anal samples)
 - 3 invalid results (anal samples)

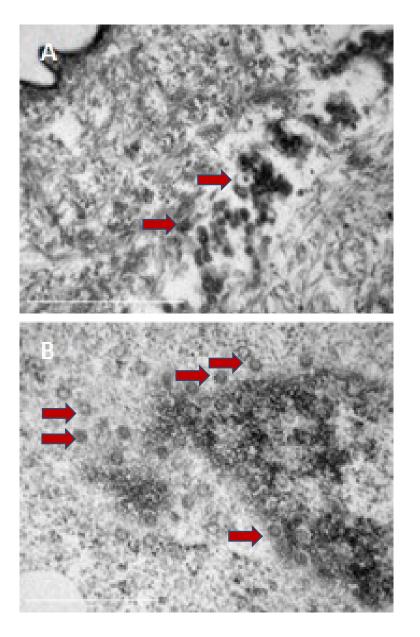
RIFT-HPV1 ANAL HPV POSITIVITY

RIFT-HPV1 CERVICAL HPV POSITIVITY

INFECTIVITY ASSAYS: RNASCOPE

HaCaT cell cultures infected with cervical samples from a patient on visit 1 (before vaccination) and visit 2 (after the first dose of Gardasil-9).

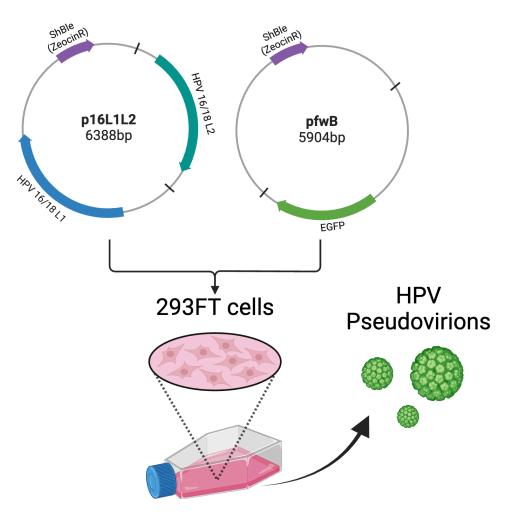
Current variations to the original protocol are being evaluated in order to optimise the assay and enable quantification of infectivity levels.


VISIT 2 VISIT 1 PBS **CERVICAL SAMPLE**

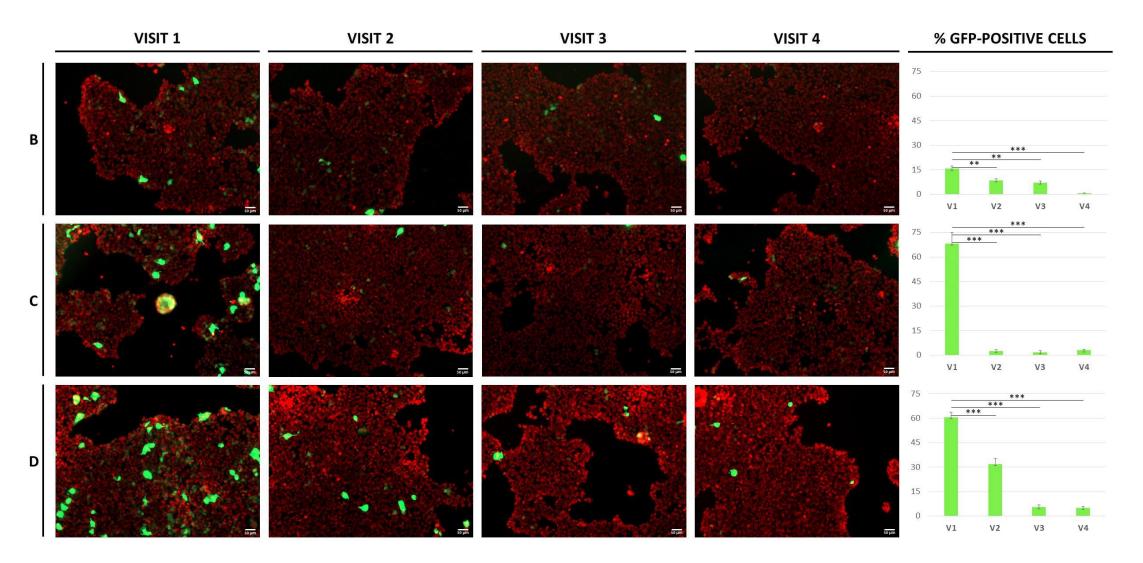
VIRION DETECTION

Cervical sample cells from an HPV-positive subject (A) and PsV-infected cells (B) were visualized in the transmission electron microscope.

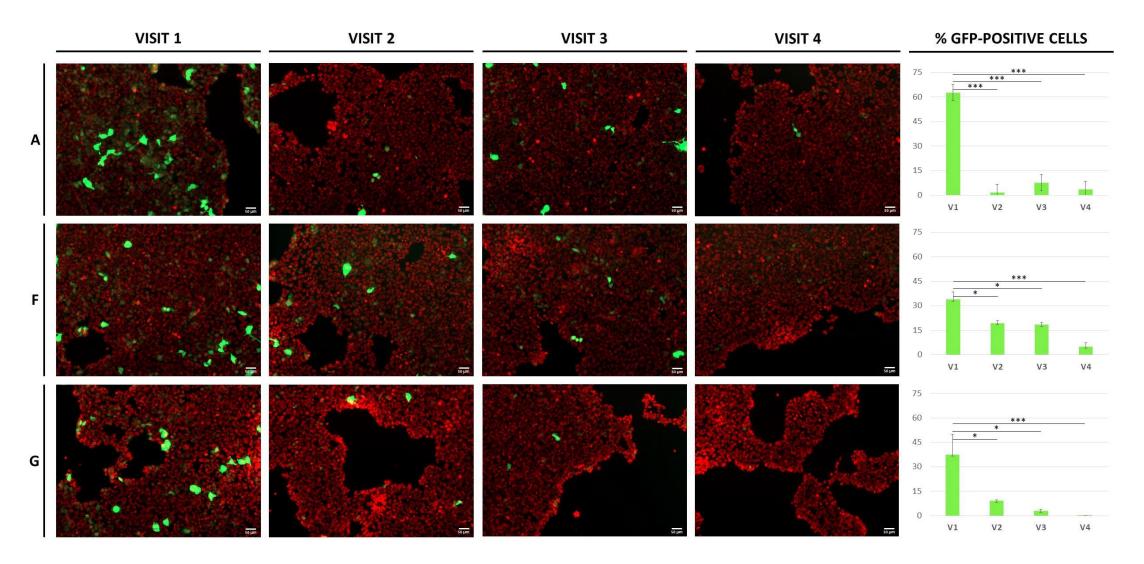
41 cervical samples were tested with a sandwich HPV16 L1 ELISA.



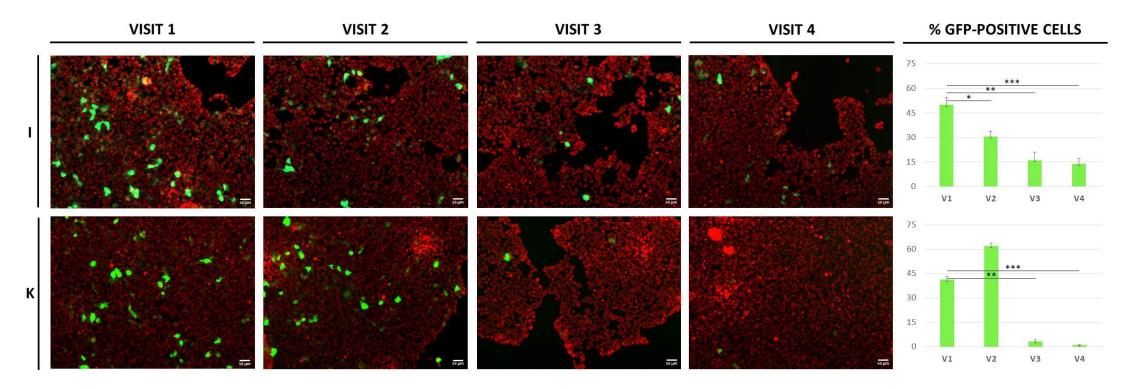
NEUTRALISATION ASSAYS


HPV pseudovirions were generated by transfecting 293TT cells with an L1/L2 plasmid for HPV16 or HPV18, together with a GFP reporter plasmid.

Cervical simples and serum are tested for their ability to neutralize the pseudovirions in 293TT cultures, before and after vaccination.



NEUTRALISATION ASSAYS: Cervical Samples (Negative)



NEUTRALISATION ASSAYS: Cervical Samples (Positive)

NEUTRALISATION ASSAYS: Cervical Samples (Positive)

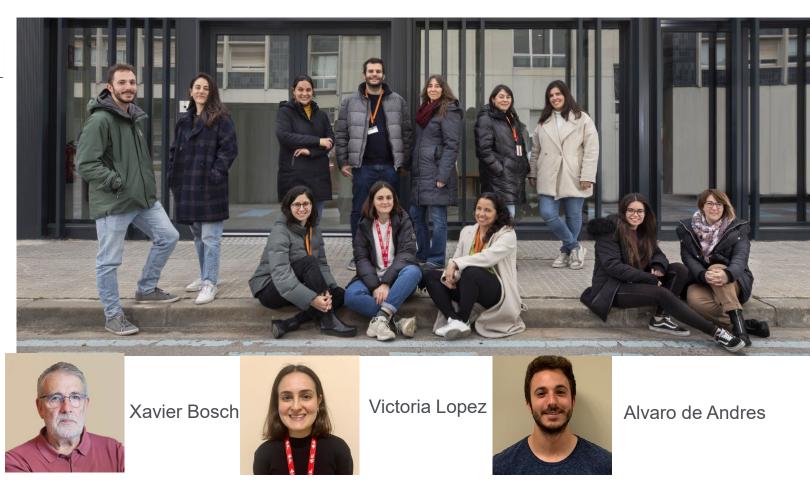
NEUTRALISATION ASSAYS

- 75.8% of HPV16-pseudovirion neutralization after one dose (n=20). In those subjects that had completed the 3-dose schedule, 90.7% and 95.6% of neutralization were observed after two and three doses, respectively (n=9).
- Neutralizing effects were comparable between positive and negative subjects, showing a 77.9% and a 74.1% of neutralization after one dose, respectively.

* Neutralisation assays in oral and anal samples are currently ongoing

NEXT STEPS

- Finalize the recrutiment (more tan one recruitment sites)
- Infectivity Assays:
 - Try different cell types: HaCaT, HeLa and 293TT
 - Sample pellet lysis for virion release
- Virion detection:
 - Alternative assays for HPV L1 protein detection in samples
- Neutralisation Assays:
 - Comparing our GFP approach with the SEAP standard
 - Characterizing neutralising levels in all samples (cervical, oral and anal)



PLOS ONE

STUDY PROTOCOL

Assessing the reduction of viral infectivity in HPV16/18-positive women after one, two, and three doses of Gardasil-9 (RIFT): Study protocol

Victoria López-Codony ^{1,2}, Álvaro de Andrés-Pablo^{1,2}, Angelica Ferrando-Díez³, Maria Eulàlia Fernández-Montolí⁴, Marta López-Querol ¹, Sara Tous ^{1,5}, Carlos Ortega-Expósito⁴, Juan Carlos Torrejón-Becerra⁴, Yolanda Pérez⁴, Anna Ferrer-Artola ⁶, Josep Maria Sole-Sedeno ⁷, Clara Grau⁸, Blas Rupérez⁸, Maria Saumoy⁹, Mónica Sánchez⁹, Paula Peremiquel-Trillas ^{1,2,5}, Laia Bruni^{1,5}, Laia Alemany^{1,5}, Francesc Xavier Bosch^{1,5,10‡}, Miquel Angel Pavón ^{1,5‡}*

Unión Europea Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"

